10 AODELd::AODELd(
bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
13 AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_,
const std::vector<std::string>& features_,
const std::string& className_, map<std::string, std::vector<int>>& states_,
const Smoothing_t smoothing)
17 className = className_;
21 states = fit_local_discretization(y);
25 Ensemble::fit(dataset, features, className, states, smoothing);
29 void AODELd::buildModel(
const torch::Tensor& weights)
32 for (
int i = 0; i < features.size(); ++i) {
33 models.push_back(std::make_unique<SPODELd>(i));
35 n_models = models.size();
36 significanceModels = std::vector<double>(n_models, 1.0);
38 void AODELd::trainModel(
const torch::Tensor& weights,
const Smoothing_t smoothing)
40 for (
const auto& model : models) {
41 model->fit(Xf, y, features, className, states, smoothing);
44 std::vector<std::string> AODELd::graph(
const std::string& name)
const
46 return Ensemble::graph(name);