19 virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y,
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const Smoothing_t smoothing) = 0;
21 virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y,
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const Smoothing_t smoothing) = 0;
22 virtual BaseClassifier& fit(torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const Smoothing_t smoothing) = 0;
23 virtual BaseClassifier& fit(torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const torch::Tensor& weights,
const Smoothing_t smoothing) = 0;
24 torch::Tensor
virtual predict(torch::Tensor& X) = 0;
25 std::vector<int>
virtual predict(std::vector<std::vector<int >>& X) = 0;
26 torch::Tensor
virtual predict_proba(torch::Tensor& X) = 0;
27 std::vector<std::vector<double>>
virtual predict_proba(std::vector<std::vector<int >>& X) = 0;
28 status_t
virtual getStatus()
const = 0;
29 float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
30 float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
31 int virtual getNumberOfNodes()
const = 0;
32 int virtual getNumberOfEdges()
const = 0;
33 int virtual getNumberOfStates()
const = 0;
34 int virtual getClassNumStates()
const = 0;
35 std::vector<std::string>
virtual show()
const = 0;
36 std::vector<std::string>
virtual graph(
const std::string& title =
"")
const = 0;
37 virtual std::string getVersion() = 0;
38 std::vector<std::string>
virtual topological_order() = 0;
39 std::vector<std::string>
virtual getNotes()
const = 0;
40 std::string
virtual dump_cpt()
const = 0;
41 virtual void setHyperparameters(
const nlohmann::json& hyperparameters) = 0;
42 std::vector<std::string>& getValidHyperparameters() {
return validHyperparameters; }
44 virtual void trainModel(
const torch::Tensor& weights,
const Smoothing_t smoothing) = 0;
45 std::vector<std::string> validHyperparameters;
46 std::vector<std::string> notes;
47 status_t status = NORMAL;