BayesNet 1.0.7.
Bayesian Network and basic classifiers Library.
Loading...
Searching...
No Matches
BaseClassifier.h
1// ***************************************************************
2// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
3// SPDX-FileType: SOURCE
4// SPDX-License-Identifier: MIT
5// ***************************************************************
6
7#pragma once
8#include <vector>
9#include <torch/torch.h>
10#include <nlohmann/json.hpp>
11#include "bayesnet/network/Network.h"
12
13namespace bayesnet {
14 enum status_t { NORMAL, WARNING, ERROR };
16 public:
17 virtual ~BaseClassifier() = default;
18 // X is nxm std::vector, y is nx1 std::vector
19 virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
20 // X is nxm tensor, y is nx1 tensor
21 virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
22 virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
23 virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
24 torch::Tensor virtual predict(torch::Tensor& X) = 0;
25 std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
26 torch::Tensor virtual predict_proba(torch::Tensor& X) = 0;
27 std::vector<std::vector<double>> virtual predict_proba(std::vector<std::vector<int >>& X) = 0;
28 status_t virtual getStatus() const = 0;
29 float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
30 float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
31 int virtual getNumberOfNodes() const = 0;
32 int virtual getNumberOfEdges() const = 0;
33 int virtual getNumberOfStates() const = 0;
34 int virtual getClassNumStates() const = 0;
35 std::vector<std::string> virtual show() const = 0;
36 std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
37 virtual std::string getVersion() = 0;
38 std::vector<std::string> virtual topological_order() = 0;
39 std::vector<std::string> virtual getNotes() const = 0;
40 std::string virtual dump_cpt() const = 0;
41 virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
42 std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
43 protected:
44 virtual void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
45 std::vector<std::string> validHyperparameters;
46 std::vector<std::string> notes; // Used to store messages occurred during the fit process
47 status_t status = NORMAL;
48 };
49}