BayesNet 1.0.7.
Bayesian Network and basic classifiers Library.
Loading...
Searching...
No Matches
Boost.cc
1// ***************************************************************
2// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
3// SPDX-FileType: SOURCE
4// SPDX-License-Identifier: MIT
5// ***************************************************************
6#include "Boost.h"
7#include "bayesnet/feature_selection/CFS.h"
8#include "bayesnet/feature_selection/FCBF.h"
9#include "bayesnet/feature_selection/IWSS.h"
10#include <folding.hpp>
11
12namespace bayesnet {
13Boost::Boost(bool predict_voting) : Ensemble(predict_voting) {
14 validHyperparameters = {"alpha_block", "order", "convergence", "convergence_best", "bisection",
15 "threshold", "maxTolerance", "predict_voting", "select_features", "block_update"};
16}
17void Boost::setHyperparameters(const nlohmann::json &hyperparameters_) {
18 auto hyperparameters = hyperparameters_;
19 if (hyperparameters.contains("order")) {
20 std::vector<std::string> algos = {Orders.ASC, Orders.DESC, Orders.RAND};
21 order_algorithm = hyperparameters["order"];
22 if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
23 throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC +
24 ", " + Orders.RAND + "]");
25 }
26 hyperparameters.erase("order");
27 }
28 if (hyperparameters.contains("alpha_block")) {
29 alpha_block = hyperparameters["alpha_block"];
30 hyperparameters.erase("alpha_block");
31 }
32 if (hyperparameters.contains("convergence")) {
33 convergence = hyperparameters["convergence"];
34 hyperparameters.erase("convergence");
35 }
36 if (hyperparameters.contains("convergence_best")) {
37 convergence_best = hyperparameters["convergence_best"];
38 hyperparameters.erase("convergence_best");
39 }
40 if (hyperparameters.contains("bisection")) {
41 bisection = hyperparameters["bisection"];
42 hyperparameters.erase("bisection");
43 }
44 if (hyperparameters.contains("threshold")) {
45 threshold = hyperparameters["threshold"];
46 hyperparameters.erase("threshold");
47 }
48 if (hyperparameters.contains("maxTolerance")) {
49 maxTolerance = hyperparameters["maxTolerance"];
50 if (maxTolerance < 1 || maxTolerance > 6)
51 throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 6]");
52 hyperparameters.erase("maxTolerance");
53 }
54 if (hyperparameters.contains("predict_voting")) {
55 predict_voting = hyperparameters["predict_voting"];
56 hyperparameters.erase("predict_voting");
57 }
58 if (hyperparameters.contains("select_features")) {
59 auto selectedAlgorithm = hyperparameters["select_features"];
60 std::vector<std::string> algos = {SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF};
61 selectFeatures = true;
62 select_features_algorithm = selectedAlgorithm;
63 if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
64 throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " +
65 SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
66 }
67 hyperparameters.erase("select_features");
68 }
69 if (hyperparameters.contains("block_update")) {
70 block_update = hyperparameters["block_update"];
71 hyperparameters.erase("block_update");
72 }
73 if (block_update && alpha_block) {
74 throw std::invalid_argument("alpha_block and block_update cannot be true at the same time");
75 }
76 if (block_update && !bisection) {
77 throw std::invalid_argument("block_update needs bisection to be true");
78 }
79 Classifier::setHyperparameters(hyperparameters);
80}
81void Boost::add_model(std::unique_ptr<Classifier> model, double significance) {
82 models.push_back(std::move(model));
83 n_models++;
84 significanceModels.push_back(significance);
85}
86void Boost::remove_last_model() {
87 models.pop_back();
88 significanceModels.pop_back();
89 n_models--;
90}
91void Boost::buildModel(const torch::Tensor &weights) {
92 // Models shall be built in trainModel
93 models.clear();
94 significanceModels.clear();
95 n_models = 0;
96 // Prepare the validation dataset
97 auto y_ = dataset.index({-1, "..."});
98 if (convergence) {
99 // Prepare train & validation sets from train data
100 auto fold = folding::StratifiedKFold(5, y_, 271);
101 auto [train, test] = fold.getFold(0);
102 auto train_t = torch::tensor(train);
103 auto test_t = torch::tensor(test);
104 // Get train and validation sets
105 X_train = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), train_t});
106 y_train = dataset.index({-1, train_t});
107 X_test = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), test_t});
108 y_test = dataset.index({-1, test_t});
109 dataset = X_train;
110 m = X_train.size(1);
111 auto n_classes = states.at(className).size();
112 // Build dataset with train data
113 buildDataset(y_train);
114 metrics = Metrics(dataset, features, className, n_classes);
115 } else {
116 // Use all data to train
117 X_train = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), "..."});
118 y_train = y_;
119 }
120}
121std::vector<int> Boost::featureSelection(torch::Tensor &weights_) {
122 int maxFeatures = 0;
123 if (select_features_algorithm == SelectFeatures.CFS) {
124 featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
125 } else if (select_features_algorithm == SelectFeatures.IWSS) {
126 if (threshold < 0 || threshold > 0.5) {
127 throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
128 }
129 featureSelector =
130 new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
131 } else if (select_features_algorithm == SelectFeatures.FCBF) {
132 if (threshold < 1e-7 || threshold > 1) {
133 throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
134 }
135 featureSelector =
136 new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
137 }
138 featureSelector->fit();
139 auto featuresUsed = featureSelector->getFeatures();
140 delete featureSelector;
141 return featuresUsed;
142}
143std::tuple<torch::Tensor &, double, bool> Boost::update_weights(torch::Tensor &ytrain, torch::Tensor &ypred,
144 torch::Tensor &weights) {
145 bool terminate = false;
146 double alpha_t = 0;
147 auto mask_wrong = ypred != ytrain;
148 auto mask_right = ypred == ytrain;
149 auto masked_weights = weights * mask_wrong.to(weights.dtype());
150 double epsilon_t = masked_weights.sum().item<double>();
151 // std::cout << "epsilon_t: " << epsilon_t << " count wrong: " << mask_wrong.sum().item<int>() << " count right: "
152 // << mask_right.sum().item<int>() << std::endl;
153 if (epsilon_t > 0.5) {
154 // Inverse the weights policy (plot ln(wt))
155 // "In each round of AdaBoost, there is a sanity check to ensure that the current base
156 // learner is better than random guess" (Zhi-Hua Zhou, 2012)
157 terminate = true;
158 } else {
159 double wt = (1 - epsilon_t) / epsilon_t;
160 alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
161 // Step 3.2: Update weights for next classifier
162 // Step 3.2.1: Update weights of wrong samples
163 weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
164 // Step 3.2.2: Update weights of right samples
165 weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
166 // Step 3.3: Normalise the weights
167 double totalWeights = torch::sum(weights).item<double>();
168 weights = weights / totalWeights;
169 }
170 return {weights, alpha_t, terminate};
171}
172std::tuple<torch::Tensor &, double, bool> Boost::update_weights_block(int k, torch::Tensor &ytrain,
173 torch::Tensor &weights) {
174 /* Update Block algorithm
175 k = # of models in block
176 n_models = # of models in ensemble to make predictions
177 n_models_bak = # models saved
178 models = vector of models to make predictions
179 models_bak = models not used to make predictions
180 significances_bak = backup of significances vector
181
182 Case list
183 A) k = 1, n_models = 1 => n = 0 , n_models = n + k
184 B) k = 1, n_models = n + 1 => n_models = n + k
185 C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
186 D) k > 1, n_models = k => n = 0, n_models = n + k
187 E) k > 1, n_models = k + n => n_models = n + k
188
189 A, D) n=0, k > 0, n_models == k
190 1. n_models_bak <- n_models
191 2. significances_bak <- significances
192 3. significances = vector(k, 1)
193 4. Don’t move any classifiers out of models
194 5. n_models <- k
195 6. Make prediction, compute alpha, update weights
196 7. Don’t restore any classifiers to models
197 8. significances <- significances_bak
198 9. Update last k significances
199 10. n_models <- n_models_bak
200
201 B, C, E) n > 0, k > 0, n_models == n + k
202 1. n_models_bak <- n_models
203 2. significances_bak <- significances
204 3. significances = vector(k, 1)
205 4. Move first n classifiers to models_bak
206 5. n_models <- k
207 6. Make prediction, compute alpha, update weights
208 7. Insert classifiers in models_bak to be the first n models
209 8. significances <- significances_bak
210 9. Update last k significances
211 10. n_models <- n_models_bak
212 */
213 //
214 // Make predict with only the last k models
215 //
216 std::unique_ptr<Classifier> model;
217 std::vector<std::unique_ptr<Classifier>> models_bak;
218 // 1. n_models_bak <- n_models 2. significances_bak <- significances
219 auto significance_bak = significanceModels;
220 auto n_models_bak = n_models;
221 // 3. significances = vector(k, 1)
222 significanceModels = std::vector<double>(k, 1.0);
223 // 4. Move first n classifiers to models_bak
224 // backup the first n_models - k models (if n_models == k, don't backup any)
225 for (int i = 0; i < n_models - k; ++i) {
226 model = std::move(models[0]);
227 models.erase(models.begin());
228 models_bak.push_back(std::move(model));
229 }
230 assert(models.size() == k);
231 // 5. n_models <- k
232 n_models = k;
233 // 6. Make prediction, compute alpha, update weights
234 auto ypred = predict(X_train);
235 //
236 // Update weights
237 //
238 double alpha_t;
239 bool terminate;
240 std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
241 //
242 // Restore the models if needed
243 //
244 // 7. Insert classifiers in models_bak to be the first n models
245 // if n_models_bak == k, don't restore any, because none of them were moved
246 if (k != n_models_bak) {
247 // Insert in the same order as they were extracted
248 int bak_size = models_bak.size();
249 for (int i = 0; i < bak_size; ++i) {
250 model = std::move(models_bak[bak_size - 1 - i]);
251 models_bak.erase(models_bak.end() - 1);
252 models.insert(models.begin(), std::move(model));
253 }
254 }
255 // 8. significances <- significances_bak
256 significanceModels = significance_bak;
257 //
258 // Update the significance of the last k models
259 //
260 // 9. Update last k significances
261 for (int i = 0; i < k; ++i) {
262 significanceModels[n_models_bak - k + i] = alpha_t;
263 }
264 // 10. n_models <- n_models_bak
265 n_models = n_models_bak;
266 return {weights, alpha_t, terminate};
267}
268} // namespace bayesnet