8#include "bayesnet/utils/bayesnetUtils.h"
12 Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
13 Classifier& Classifier::build(
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const torch::Tensor& weights,
const Smoothing_t smoothing)
15 this->features = features;
16 this->className = className;
17 this->states = states;
21 auto n_classes = states.at(className).size();
22 metrics = Metrics(dataset, features, className, n_classes);
25 trainModel(weights, smoothing);
29 void Classifier::buildDataset(torch::Tensor& ytmp)
32 auto yresized = torch::transpose(ytmp.view({ ytmp.size(0), 1 }), 0, 1);
33 dataset = torch::cat({ dataset, yresized }, 0);
35 catch (
const std::exception& e) {
36 std::stringstream oss;
37 oss <<
"* Error in X and y dimensions *\n";
38 oss <<
"X dimensions: " << dataset.sizes() <<
"\n";
39 oss <<
"y dimensions: " << ytmp.sizes();
40 throw std::runtime_error(oss.str());
43 void Classifier::trainModel(
const torch::Tensor& weights, Smoothing_t smoothing)
45 model.fit(dataset, weights, features, className, states, smoothing);
48 Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y,
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const Smoothing_t smoothing)
52 const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
53 return build(features, className, states, weights, smoothing);
56 Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y,
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const Smoothing_t smoothing)
58 dataset = torch::zeros({
static_cast<int>(X.size()),
static_cast<int>(X[0].size()) }, torch::kInt32);
59 for (
int i = 0; i < X.size(); ++i) {
60 dataset.index_put_({ i,
"..." }, torch::tensor(X[i], torch::kInt32));
62 auto ytmp = torch::tensor(y, torch::kInt32);
64 const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
65 return build(features, className, states, weights, smoothing);
67 Classifier& Classifier::fit(torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const Smoothing_t smoothing)
69 this->dataset = dataset;
70 const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
71 return build(features, className, states, weights, smoothing);
73 Classifier& Classifier::fit(torch::Tensor& dataset,
const std::vector<std::string>& features,
const std::string& className, std::map<std::string, std::vector<int>>& states,
const torch::Tensor& weights,
const Smoothing_t smoothing)
75 this->dataset = dataset;
76 return build(features, className, states, weights, smoothing);
78 void Classifier::checkFitParameters()
80 if (torch::is_floating_point(dataset)) {
81 throw std::invalid_argument(
"dataset (X, y) must be of type Integer");
83 if (dataset.size(0) - 1 != features.size()) {
84 throw std::invalid_argument(
"Classifier: X " + std::to_string(dataset.size(0) - 1) +
" and features " + std::to_string(features.size()) +
" must have the same number of features");
86 if (states.find(className) == states.end()) {
87 throw std::invalid_argument(
"class name not found in states");
89 for (
auto feature : features) {
90 if (states.find(feature) == states.end()) {
91 throw std::invalid_argument(
"feature [" + feature +
"] not found in states");
95 torch::Tensor Classifier::predict(torch::Tensor& X)
98 throw std::logic_error(CLASSIFIER_NOT_FITTED);
100 return model.predict(X);
102 std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
105 throw std::logic_error(CLASSIFIER_NOT_FITTED);
107 auto m_ = X[0].size();
109 std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
110 for (
auto i = 0; i < n_; i++) {
111 Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
113 auto yp = model.predict(Xd);
116 torch::Tensor Classifier::predict_proba(torch::Tensor& X)
119 throw std::logic_error(CLASSIFIER_NOT_FITTED);
121 return model.predict_proba(X);
123 std::vector<std::vector<double>> Classifier::predict_proba(std::vector<std::vector<int>>& X)
126 throw std::logic_error(CLASSIFIER_NOT_FITTED);
128 auto m_ = X[0].size();
130 std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
132 for (
auto i = 0; i < n_; i++) {
133 Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
135 auto yp = model.predict_proba(Xd);
138 float Classifier::score(torch::Tensor& X, torch::Tensor& y)
140 torch::Tensor y_pred = predict(X);
141 return (y_pred == y).sum().item<
float>() / y.size(0);
143 float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
146 throw std::logic_error(CLASSIFIER_NOT_FITTED);
148 return model.score(X, y);
150 std::vector<std::string> Classifier::show()
const
154 void Classifier::addNodes()
157 for (
const auto& feature : features) {
158 model.addNode(feature);
160 model.addNode(className);
162 int Classifier::getNumberOfNodes()
const
165 return fitted ? model.getFeatures().size() : 0;
167 int Classifier::getNumberOfEdges()
const
169 return fitted ? model.getNumEdges() : 0;
171 int Classifier::getNumberOfStates()
const
173 return fitted ? model.getStates() : 0;
175 int Classifier::getClassNumStates()
const
177 return fitted ? model.getClassNumStates() : 0;
179 std::vector<std::string> Classifier::topological_order()
181 return model.topological_sort();
183 std::string Classifier::dump_cpt()
const
185 return model.dump_cpt();
187 void Classifier::setHyperparameters(
const nlohmann::json& hyperparameters)
189 if (!hyperparameters.empty()) {
190 throw std::invalid_argument(
"Invalid hyperparameters" + hyperparameters.dump());