BayesNet 1.0.7.
Bayesian Network and basic classifiers Library.
Loading...
Searching...
No Matches
Ensemble.h
1// ***************************************************************
2// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
3// SPDX-FileType: SOURCE
4// SPDX-License-Identifier: MIT
5// ***************************************************************
6
7#ifndef ENSEMBLE_H
8#define ENSEMBLE_H
9#include <torch/torch.h>
10#include "bayesnet/utils/BayesMetrics.h"
11#include "bayesnet/utils/bayesnetUtils.h"
12#include "bayesnet/classifiers/Classifier.h"
13
14namespace bayesnet {
15 class Ensemble : public Classifier {
16 public:
17 Ensemble(bool predict_voting = true);
18 virtual ~Ensemble() = default;
19 torch::Tensor predict(torch::Tensor& X) override;
20 std::vector<int> predict(std::vector<std::vector<int>>& X) override;
21 torch::Tensor predict_proba(torch::Tensor& X) override;
22 std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
23 float score(torch::Tensor& X, torch::Tensor& y) override;
24 float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
25 int getNumberOfNodes() const override;
26 int getNumberOfEdges() const override;
27 int getNumberOfStates() const override;
28 std::vector<std::string> show() const override;
29 std::vector<std::string> graph(const std::string& title) const override;
30 std::vector<std::string> topological_order() override
31 {
32 return std::vector<std::string>();
33 }
34 std::string dump_cpt() const override
35 {
36 std::string output;
37 for (auto& model : models) {
38 output += model->dump_cpt();
39 output += std::string(80, '-') + "\n";
40 }
41 return output;
42 }
43 protected:
44 void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
45 torch::Tensor predict_average_voting(torch::Tensor& X);
46 std::vector<std::vector<double>> predict_average_voting(std::vector<std::vector<int>>& X);
47 torch::Tensor predict_average_proba(torch::Tensor& X);
48 std::vector<std::vector<double>> predict_average_proba(std::vector<std::vector<int>>& X);
49 torch::Tensor compute_arg_max(torch::Tensor& X);
50 std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X);
51 torch::Tensor voting(torch::Tensor& votes);
52 // Attributes
53 unsigned n_models;
54 std::vector<std::unique_ptr<Classifier>> models;
55 std::vector<double> significanceModels;
56 bool predict_voting;
57 };
58}
59#endif